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The Darcy model with the Boussinesq approximations is used to study double-diffusive
instability in a horizontal rectangular porous enclosure subject to two sources of
buoyancy. The two vertical walls of the cavity are impermeable and adiabatic while
Dirichlet or Neumann boundary conditions on temperature and solute are imposed on
the horizontal walls. The onset and development of convection are first investigated
using the linear and nonlinear perturbation theories. Depending on the governing
parameters of the problem, four different regimes are found to exist, namely the
stable diffusive, the subcritical convective, the oscillatory and the augmenting direct
regimes. The governing parameters are the thermal Rayleigh number, RT , buoyancy
ratio, N, Lewis number, Le, normalized porosity of the porous medium, ε, aspect
ratio of the enclosure, A, and the thermal and solutal boundary condition type, κ,
applied on the horizontal walls. On the basis of the nonlinear perturbation theory
and the parallel flow approximation (for slender or shallow enclosures), analytical
solutions are derived to predict the flow behaviour. A finite element numerical method
is introduced to solve the full governing equations. The results indicate that steady
convection can arise at Rayleigh numbers below the supercritical value, indicating
the development of subcritical flows. At the vicinity of the threshold of supercritical
convection the nonlinear perturbation theory and the parallel flow approximation
results are found to agree well with the numerical solution. In the overstable regime,
the existence of multiple solutions, for a given set of the governing parameters, is
demonstrated. Also, numerical results indicate the possible occurrence of travelling
waves in an infinite horizontal enclosure.

1. Introduction
The analogue of the Rayleigh–Bénard problem in a horizontal porous layer has

been much studied in the past. Starting with the early works of Horton & Rogers
(1945) and Lapwood (1948), several studies have been conducted to determine the
conditions for the onset of motion within porous enclosures subject to various
boundary conditions. A wide cross-section of fundamental research on this topic has
been reviewed by Cheng (1978) and Nield & Bejan (1999). It is rather surprising that
the related problem of the onset and development of convection in porous media
saturated with binary mixtures has received marginal attention. The dynamics of heat
and mass transfer for flows induced by both temperature and concentration fields, the
so-called double-diffusive flows, are however expected to be very different from those
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driven by the temperature field solely. Double-diffusive convection in porous media
has many applications, among them the migration of moisture in fibrous insulation,
contaminant transport in saturated soil, underground disposal of nuclear wastes and
electro-chemical and drying processes.

Double-diffusive instability in a horizontal porous layer was first studied by Nield
(1968). On the basis of a linear stability analysis, the criterion for the onset of
convection was derived for various thermal and solutal boundary conditions. An
extension of the analysis was made by Taunton & Lightfoot (1972) to determine the
conditions for which ‘salt fingers’ develop in the presence of both temperature and
concentration gradients. The case of sparsely packed porous medium was investigated
by Poulikakos (1986) on the basis of the Brinkman-extended Darcy model. The
boundaries defining the regions of direct and overstable modes were obtained in
terms of the governing parameters of the problem. Malashetty (1993) also relied
on linear stability analysis to determine the effect of anisotropic thermo-convective
currents and the critical Rayleigh numbers for both marginal and overstable motions.

Rudraiah, Shrimani & Friedrich (1982) applied nonlinear stability analysis to the
case of a porous layer with isothermal and isosolutal boundaries. The effects of Prandtl
number, ratio of diffusivities and the permeability parameter on finite-amplitude con-
vection were studied. Brand & Steinberg (1983) investigated finite-amplitude convec-
tion near the threshold for both stationary and oscillatory instabilities. The temporal
behaviour of the Nusselt and Sherwood numbers was predicted for the oscillatory
regime. Murray & Chen (1989) investigated experimentally and numerically double-
diffusive convection in a horizontal porous layer. In the presence of stabilizing salinity
gradients the onset of convection was marked by a dramatic increase in heat flux at
a critical temperature difference value. Furthermore, when the temperature difference
was reduced to subcritical values the heat flux curve established a hysteresis loop.

A few studies have also been reported concerning the regime of large-amplitude
convection within a porous medium subject to vertical gradient of heat and solute.
Trevisan & Bejan (1987) investigated the convective mass transfer produced by high
thermal Rayleigh number convection in a two-dimensional porous cavity heated
isothermally from below. Their numerical results, together with a scale analysis,
revealed the existence of different scaling laws for the dependence of the overall
mass transfer rate in term of the Lewis number. Natural convection in a porous
medium heated from below in a square cavity with two opposing sources of buoyancy
(heat and salt) has been studied numerically by Rosenberg & Spera (1992) for a
variety of boundary and initial conditions on the salinity field. The effects of the
governing parameters on the heat and mass transfer rates were discussed. Double-
diffusive fingering convection in a horizontal porous medium, in which horizontally
periodic boundary conditions are prescribed, was considered by Chen & Chen (1993).
The Darcy equation, including Brinkman and Forchheimer terms, was used for the
momentum equation. The stability boundaries which separate regions of different
types of convective motion were identified in terms of the thermal and solutal
Rayleigh numbers. Mamou et al. (1995) considered thermosolutal convection in an
inclined porous layer heated and salted from the sides by uniform fluxes of heat and
solute. An analytical solution, based on the parallel flow approximation, was found
to be in good agreement with the numerical solution of the full governing equations.
The possible development of subcritical steady flows, for the case of a horizontal
layer, was predicted and confirmed by the numerical results.

The aim of the present analysis is to study double-diffusive convection phenomena
in a horizontal porous enclosure subject to vertical gradients of temperature and
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Figure 1. Schematic diagram of the physical model and coordinate system.

solute. Analytical solutions are obtained using linear and nonlinear perturbation
theories and the parallel flow approximation. The results are verified numerically by
solving the full nonlinear set of governing equations with a finite element method.

The content of the present work is organized as follows. In the next section (§ 2) the
physical system is described and a mathematical model of the problem is derived. In
§ 3, the finite element numerical model used for solving the full governing equations
is discussed. In § 4, two nonlinear theories are proposed to study the bifurcation
character near the threshold of monotonic convection: the first one is based on the
nonlinear perturbation theory and the second one on the parallel flow approximation
for slender or shallow enclosures. Finally, in § 5, some relevant conclusions about the
present findings are stated.

2. Mathematical formulation
The physical model considered in the present study is a two-dimensional horizontal

porous layer of height H ′ and width W ′ (see figure 1). The two vertical walls of the
cell are assumed impermeable and adiabatic while Dirichlet or Neumann boundary
conditions are applied, for both temperature and concentration, on the horizontal
walls. The convective motion in the homogeneous isotropic porous medium is assumed
to be governed by the Darcy law for which inertia and viscous effects are negligible.
The interaction between heat and mass transfer, known as Soret and Dufour effects,
are supposed to have no influence on the convective flow (see, for instance, De Groot
& Mazur 1962 and Bergman & Shrinivasan 1989), so they are neglected. The binary
mixture that saturates the porous matrix is modelled as a Newtonian Boussinesq
incompressible fluid whose density, ρ, varies linearly with temperature, T ′, and solute
concentration, S ′, as

ρ = ρ0[1− βT (T ′ − T ′0)− βS (S ′ − S ′0)], (2.1)

where ρ0 is the density at temperature T ′ = T ′0 and solute concentration S ′ = S ′0, βT
and βS are the thermal and solutal expansion coefficients, respectively and 0 denotes
a reference state.

The dimensionless equations describing conservation of momentum, energy and
solute in the solution-saturated porous medium are respectively

∇2Ψ = −
(
RT

∂T

∂x
+
RS

Le

∂S

∂x

)
, (2.2)
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∂T

∂t
−J(Ψ,T ) = ∇2T , (2.3)

ε
∂S

∂t
−J(Ψ, S) =

1

Le
∇2S, (2.4)

where J is the usual Jacobian operator,

J(f, g) =
∂f

∂x

∂g

∂y
− ∂f

∂y

∂g

∂x
,

and Ψ is the stream function defined as

u =
∂Ψ

∂y
, v = −∂Ψ

∂x
(2.5)

such that the mass conservation is satisfied.
The above equations were non-dimensionalized with the use of the following scales:

(x, y) =

(
x′

`∗
,
y′

`∗

)
, t =

t′α
σ`∗2

, (u, v) =

(
u′`∗

α
,
v′`∗

α

)
,

Ψ =
Ψ ′

α
, S =

(S ′ − S ′0)
∆S∗

, T =
(T ′ − T ′0)

∆T ∗
,

 (2.6)

where u′ and v′ are the volume-averaged velocity components, t′ is the time, α and σ
are thermal diffusivity of the saturated porous medium and saturated porous medium
to fluid heat capacity ratio, respectively. The length scale, `∗, is set to H ′ when A > 1
and to W ′ when A < 1. Here, A is the aspect ratio of the enclosure defined as
A = W ′/H ′.

The definitions of T ′0, S ′0, ∆T ∗ and ∆S∗ are related to the thermal and solutal
boundary conditions. They are given by

T ′0 = κ T ′(0,0) + (1− κ)
T ′L + T ′U

2
, S ′0 = κ S ′(0,0) + (1− κ)

S ′L + S ′U
2

,

∆T ∗ = κ
q′H ′

k
+ (1− κ)(T ′L − T ′U), ∆S∗ = κ

j ′H ′

D
+ (1− κ)(S ′L − S ′U),

 (2.7)

where the subscript (0, 0) denotes the origin of the coordinates system, the subscripts
L and U refer to the lower and the upper horizontal boundaries respectively, D is the
mass-averaged diffusivity through the fluid-saturated porous medium, k the thermal
conductivity of the saturated porous medium and the quantities q′ and j ′ are the
constant fluxes of heat and mass (per unit area) applied on the horizontal walls.
The parameter κ is set equal to zero for Dirichlet boundary conditions and to 1 for
Neumann ones.

The dimensionless boundary conditions depicted in figure 1 are expressed by

x = ± Ax

2
, Ψ = 0 and

∂ϕ

∂x
= 0, (2.8)

y = ± Ay

2
, Ψ = 0 and κ Ay

∂ϕ

∂y
± (1− κ)ϕ = −κ+ 1

2
, (2.9)

where ϕ stands for T and S , Ax and Ay are the aspect ratio of the enclosure in the
x- and y-directions, respectively, defined by

Ax = A and Ay = 1 for A > 1,

Ax = 1 and Ay = 1/A for A < 1.

}
(2.10)
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The dimensionless parameters governing the present problem are the thermal
Rayleigh number, RT , the solutal Rayleigh number, RS , the Lewis number, Le, the
aspect ratio of the cavity, A, and the normalized porosity of the porous medium, ε.
They are defined respectively by

RT =
g βT K ∆T ∗ `∗

αν
, RS =

g βS K ∆S∗ `∗

Dν
, Le =

α

D
, A =

W ′

H ′
, ε =

ε

σ
, (2.11)

where K is the permeability of the porous medium, g the acceleration due to gravity,
ν the kinematic viscosity of the fluid and ε the porosity of the porous medium.

It is noted that the volumetric expansion coefficient, βT , due to temperature fluc-
tuation is usually positive, but that due to solute concentration variation, βS , can
be either positive or negative. Thus, with the thermal and solutal boundary con-
ditions considered here, heat destabilizes the vertical density gradient while salt is
destabilizing for βS > 0 and stabilizing for βS < 0.

At this stage, since we are interested in investigating the stability of the system
under study, it is convenient to consider the pure diffusive solution as a part of the
total one. Thus we introduce the following transformations:

Ψ (t, x, y) = ΨC + ψ(t, x, y),

T (t, x, y) = TC + θ(t, x, y),

S(t, x, y) = SC + φ(t, x, y),

 (2.12)

where (ΨC,TC, SC) is the static state of the system described by

ΨC = 0, TC = − y

Ay
, SC = − y

Ay
, (2.13)

and ψ(t, x, y), θ(t, x, y) and φ(t, x, y) are the deviations from the rest-state solution
resulting from the convective effects.

Upon substituting (2.12) and (2.13) into (2.2)–(2.4), the resulting governing equa-
tions expressing conservation of momentum, energy and solute reduce to

∇2ψ = −
(
RT

∂θ

∂x
+
RS

Le

∂φ

∂x

)
,

∂θ

∂t
+

1

Ay

∂ψ

∂x
−J(ψ, θ) = ∇2θ,

ε
∂φ

∂t
+

1

Ay

∂ψ

∂x
−J(ψ, φ) =

1

Le
∇2φ,


(2.14)

respectively and the boundary conditions to

x = ±Ax
2
, ψ = 0,

∂ϕ

∂x
= 0,

y = ±Ay
2
, ψ = 0, κ

∂ϕ

∂y
+ (1− κ) ϕ = 0.

 (2.15)

According to the thermal and solutal boundary conditions applied on the horizontal
walls of the cavity, the local heat and mass transfer rates are expressed in terms of
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the Nusselt and Sherwood numbers as

Nu = κ
1

T(x,−Ay/2) − T(x,Ay/2)

− (1− κ)
∂T

∂y

∣∣∣∣
y=±Ay/2

,

Sh = κ
1

S(x,−Ay/2) − S(x,Ay/2)

− (1− κ)
∂S

∂y

∣∣∣∣
y=±Ay/2

.

 (2.16)

The corresponding mean values along the horizontal walls can be computed from
the following integrals:

Nu =
1

Ax

∫ Ax/2

−Ax/2
Nu dy, Sh =

1

Ax

∫ Ax/2

−Ax/2
Sh dy. (2.17)

3. Numerical solution
A finite element method is used to solve the governing equations (2.14) with the

boundary conditions (2.15). Since the details of the present numerical procedure are
discussed by Mamou, Vasseur & Bilgen (1998a) only the main steps are presented
here. The calculus domain is discretized into rectangular elements known as the
nine-noded Lagrangian cubic elements, with uniform grids. The temporal derivatives
in the energy and solute concentration equations are discretized according to the
finite difference scheme. First- (for the first time step) and second-order backward
schemes are used. The governing equations are discretized using the Bubnov–Galerkin
procedure with an implicit scheme. The resulting discretized momentum equation is
solved by the successive over relaxation method (SOR). The energy and concentration
equations are solved by an iterative procedure based on the pentadiagonal matrix
algorithm (PDMA). Depending on the governing parameters values, the grid size was
varied from 20× 20 to 20× 50 and the time step, ∆t, from 10−4 to 10−3.

The computer code has been validated for various cases and the results are
published elsewhere (Mamou et al. 1995; Mamou 1998). The comparison of our
results with those available in the literature indicates that, in general, the maximum
deviation is less than about 0.5%.

4. Analytical solution
In this section we study the onset and development of convection within a porous

rectangular cavity using the nonlinear perturbation theory. First, finite-amplitude
convection is investigated on the basis of a truncated representation of Fourier series.
The resulting nonlinear equations are solved on the assumption that the motion is
steady. Then the linear theory is used to predict the thresholds of both marginal
and overstable motions. Finally, an analytical solution, based on the parallel flow
approximation, is derived for the special case of a shallow (A� 1) or slender (A� 1)
enclosure subject to Neumann boundary conditions.

4.1. Nonlinear perturbation theory

Finite-amplitude convection in a porous cavity saturated with a binary fluid is now
investigated using a limited representation of Fourier series. Analytical solutions will
be derived for the cases of Dirichlet and Neumann boundary conditions. In general,
it was demonstrated by Veronis (1968), Platten & Legros (1984) and Ahlers & Lücke
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(1987) that, at the vicinity of the onset of convection, the perturbation profiles can
be approximated by the following relations:

ψ(t, x, y) = ψ0(t) F(x, y),

θ(t, x, y) = θ0(t) G(x, y) + θ1(t) h(x, y),

φ(t, x, y) = φ0(t) G(x, y) + φ1(t) h(x, y),

 (4.1)

where the amplitude ψ0, θ0, θ1, φ0 et φ1 are time functions while F(x, y), G(x, y) and
h(x, y) are space functions describing the perturbation profiles at the vicinity of the
onset of convection. These functions satisfy the boundary conditions given by (2.15).
According to Veronis (1968), Platten & Legros (1984) and Ahlers & Lücke (1987),
the functions F(x, y) and G(x, y) can be chosen as the temperature and concentration
perturbation profiles corresponding to the onset of monotonic convection and the
function h(x, y) as

h(x, y) = sin (2ryy) when κ = 0,

h(x, y) = sin (ryy) when κ = 1,

}
(4.2)

where ry = π/Ay .
Substituting (4.1) into (2.14), using F(x, y), G(x, y) and h(x, y) as the weighted func-

tions and the Green theorem, the weak Galerkin formulation leads to the following
set of ordinary differential equations:

Kψ ψ0 = B
(
RTθ0 +

RS

Le
φ0

)
, (4.3)

Mdθ0

dt
− L
Ay
ψ0 +L1ψ0θ1 = −K θ0,

M1

dθ1

dt
−L2ψ0θ0 = −K1 θ1,

 (4.4)

εMdφ0

dt
− L
Ay
ψ0 +L1ψ0φ1 = −K

Le
φ0,

εM1

dφ1

dt
−L2ψ0φ0 = −K1

Le
φ1,

 (4.5)

where the constants B, Kψ , K, L, L1, L2, M and M1 can be evaluated from the
integrals

B =

∫
Ω

∂G

∂x
F dΩ, K =

∫
Ω

(∇G)2 dΩ, Kψ =

∫
Ω

(∇F)2dΩ,

K1 =

∫
Ω

(∇h)2 dΩ, L =

∫
Ω

∂F

∂x
G dΩ, M =

∫
Ω

G2 dΩ,

M1 =

∫
Ω

h2 dΩ, L1 = −
∫
Ω

J(F, h)G dΩ, L2 =

∫
Ω

J(F,G)h dΩ,


(4.6)

Ω being the physical domain of integration. Below, these integrals will be performed
for the cases of Dirichlet and Neumann boundary conditions respectively.

(i) Constant temperatures and concentrations (κ = 0)
This situation corresponds to the Bénard problem for which the exact analytical
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profiles of the functions F(x, y) and G(x, y) are given by

F(x, y) = f(x) cos (ryy), G(x, y) = g(x) cos (ryy), (4.7)

where ry = π/Ay and the functions f(x) and g(x) are defined as

f(x) = cos (rxx) and g(x) = sin (rxx) for n = 1, 3, . . . ,

f(x) = sin (rxx) and g(x) = cos (rxx) for n = 2, 4, . . . ,

}
(4.8)

where rx = nπ/Ax and n is the number of cells.

Substituting (4.2) and (4.7) into (4.6) and performing the resulting integrals, it is
readily found that

B = −(−1)nrxD, K = (r2
x + r2

y)D, Kψ = (r2
x + r2

y)D,
K1 = 8r2

yD, L = −(−1)nrxD, L1 = (−1)nrxryD,
L2 = (−1)nrxryD, M = D, M1 = 2D,

 (4.9)

where D = AxAy/4.

(ii) Constant fluxes of heat and solute (κ = 1)

When the horizontal walls are subject to constant fluxes of heat and solute, it can
be demonstrated easily that F(x, y) and G(x, y) have the expressions

F(x, y) = cos (rxx)[cosh (ξ0y)− γ0 cos (η0y)],

G(x, y) = sin (rxx)[cosh (ξ0y) + γ0 cos (η0y)],

}
(4.10)

where γ0, ξ0, η0 and rx are defined as

ξ0 =

√
rx(
√
R
sup
0 + rx), η0 =

√
rx(
√
R
sup
0 − rx),

γ0 =
cosh (ξ0Ay/2)

cos (η0Ay/2)
, rx =

π

Ax
,

 (4.11)

and Rsup0 is a constant which can be computed from the relation

ξ0 tanh (ξ0Ay/2) = η0 tan (η0Ay/2). (4.12)

For this case, (4.6) together with (4.2) and (4.10) yields

B = π(a1 − γ2
0a3)/2, K = π

√
R
sup
0 (a1 − γ2

0a3)/2,

Kψ = π
√
R
sup
0 (a1 − γ2

0a3)/2, K1 = π2(Ax/2),

L = π(a1 − γ2
0a3)/2, M = (a1 + 2γ0a2 + γ2

0a3)(Ax/2),

M1 = Ax/2, L1 = π2(a4 − γ2
0a5)/2,

L2 =
π

2

(
4ξ2

0

4ξ2
0 + r2

y

cosh (ξ0Ay)− γ2
0

4η2
0

4η2
0 − r2

y

cos (η0Ay)

)
,


(4.13)
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where

a1 =
1

2

(
Ay +

sinh (ξ0Ay)

ξ0

)
, a2 =

4ξ0

ξ2
0 + η2

0

sinh (ξ0Ay/2) cos (η0Ay/2),

a3 =
1

2

(
Ay +

sin (η0Ay)

η0

)
, a4 =

Ay

π
+

ry

4ξ2
0 + r2

y

cosh (η0Ay),

a5 =
Ay

π
− ry

4η2
0 − r2

y

cos (η0Ay).


(4.14)

4.1.1. Linear analysis

The stability of the rest state of the system (ΨC = 0, TC = SC = −y/Ay) is predicted
upon assuming that amplitudes ψ0(t), θ0(t), θ1(t), φ0(t) and φ1(t), in (4.3)–(4.5), are
small enough and can be expressed as

ψ0(t) = ψ0e
pt, θ0(t) = θ0e

pt, θ1(t) = θ1e
pt, φ0(t) = φ0e

pt, φ1(t) = φ1e
pt, (4.15)

where p is the growth rate of the perturbation amplitude. Infinitesimal perturbations
of the rest state may either damp or grow depending on the value of the parameter p.

Substituting (4.15) into (4.3)–(4.5), neglecting the small nonlinear terms and after
some algebra, we readily arrive at the dispersion relationship

ε2 Le2 p2 − γ ε Le p1 p− γ2p2 = 0, (4.16)

where

p1 = εLe(R0
T − 1) + R0

S − 1, p2 = εLe(R0
T + R0

S − 1), (4.17)

and

R0
T =

RT

R
sup
0

, R0
S =

RS

R
sup
0

, R
sup
0 = Ay R

sup, (4.18)

in which

Rsup =
KψK
BL , γ =

K
M . (4.19)

In the above equations, the parameter Rsup0 depends only on the aspect ratio of the
enclosure, A, and on the thermal and solutal boundary conditions types, κ. When
κ = 0, it can de demonstrated from (4.9), (4.18) and (4.19) that the value of this
parameter is given by R

sup
0 = Ay(r

2
x + r2

y)
2/r2

x. However, when κ = 1, Rsup0 has to be
determined by solving numerically (4.12) using, for instance, the Newton–Raphson
procedure. From a physical point of view the parameter Rsup0 corresponds to the
supercritical Rayleigh number for the onset of convection in a system destabilized
solely by a thermal gradient (i.e. Rayleigh–Bénard convection, RS = N = 0).

Solving (4.16) for p, it is readily found that

p =
γ

2εLe

(
p1 ±

√
p2

1 + 4p2

)
, (4.20)

where, in general, the constant p is a complex number which can be decomposed as
p = pr +ipi, where pr and pi are the real and imaginary parts respectively. From (4.20)
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it is observed that

pr =
γ

2εLe

(
p1 ±

√
p2

1 + 4p2

)
pi = 0

 if p2
1 + 4p2 > 0,

pr =
γ

2εLe
p1

pi = ± γ

2εLe

√
|p2

1 + 4p2|

 if p2
1 + 4p2 < 0.


(4.21)

The marginal state of instability corresponds to p = 0 from which the supercritical
Rayleigh number for the onset of supercritical convection, RsupTC , is given by

R
sup
TC = (1− R0

S )Rsup0 or R
sup
TC =

R
sup
0

1 +NLe
, (4.22)

where the subscript C refers to a critical state and N is the solutal to thermal buoyancy
ratio defined as

N =
βS∆S∗

βT∆T ∗
=

RS

LeRT
. (4.23)

The marginal state of instability at which oscillatory convection may arise, corre-
sponds to pr = 0 and pi 6= 0, i.e. p1 = 0. From (4.17) it follows that the overstable
critical Rayleigh number, RoverTC , for the onset of oscillatory flow, when expressed in
terms of RS or N, is given by

RoverTC =
(εLe+ 1− R0

S )

εLe
R
sup
0 or RoverTC =

(εLe+ 1)

Le(ε+N)
R
sup
0 . (4.24)

The oscillatory convective regime (pr > 0 and pi 6= 0) is expected to exist up to
a critical Rayleigh number RoscTC at which the transition from the oscillatory to the
direct mode occurs. Thus, overstability exists only when the conditions p2

1 + 4p2 < 0
and p1 > 0 are satisfied, i.e. RoverTC 6 RT 6 RoscTC where the value of RoscTC is deduced
from the condition p2

1 + 4p2 = 0 as

RoscTC =

(√
εLe− 1 +

√−R0
S

)2

εLe
R
sup
0 or RoscTC =

(εLe− 1)

Le(
√
ε−√−N)2

R
sup
0 . (4.25)

On an (RT , RS )-plane, the three critical Rayleigh numbers (RoverTC , RoscTC and R
sup
TC)

intersect at a point Q having the coordinates

(RT , RS ) =

(
εLe

εLe− 1
R
sup
0 ,

−1

εLe− 1
R
sup
0

)
. (4.26)

From (4.25) and (4.26), it is clear that the oscillatory regime exists only when RS < 0
(N < 0) and more specifically when

R0
T >

εLe

εLe− 1
, Le >

1

ε
,

or

R0
S < − 1

(εLe− 1)
,

1

εLe2
< −N <

1

Le
.


(4.27)
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4.1.2. Nonlinear analysis

The linear stability theory describes only the size of the convective cells and the
time evolution of small-amplitude flows. For finite-amplitude convection, a nonlinear
theory is required.

Assuming that the flow is steady, it is readily found from (4.4) and (4.5) that

θ0 =
L ψ0/Ay

K+
L2L1

K1

ψ2
0

, φ0 =
LLe ψ0/Ay

K+
L2L1

K1

Le2 ψ2
0

. (4.28)

Substituting the above results into (4.3) yields, after some algebraic simplifications,
the following equation for the amplitude ψ0:

ψ0(Le
4ψ4

0 − 2aLe2d1ψ
2
0 − a2d2) = 0, (4.29)

where

d1 = Le2(R0
T − 1) + R0

S − 1, d2 = 4Le2(R0
T + R0

S − 1), a =
KK1

2L1L2

, (4.30)

where R0
T and R0

S are defined in (4.18)
The possible solutions of equation (4.29) are

ψ0 = 0 (4.31)

and

ψ0 = ±
√
a

Le

(
d1 ±

√
d2

1 + d2

)1/2

. (4.32)

According to the above results, five different steady-state solutions are possible. One
corresponds to the pure diffusive regime (ψ0 = 0) and the others to convective regimes.
In (4.32) the plus or minus sign in front of the right-hand side expression indicates
that the direction of the fluid circulation can be either clockwise or counterclockwise.
On the other hand, the plus or minus sign within the brackets indicates that two
different convective solutions are possible.

From a mathematical point of view, (4.32) shows that, depending on the governing
parameters values, the primary steady bifurcation can be supercritical or subcritical.
When the bifurcation is supercritical a stable branch of solutions, corresponding to
supercritical convection, is initiated at a supercritical Rayleigh number, RsupTC , with
zero amplitude at the threshold as will be discussed later. When the bifurcation
is subcritical two branches of solutions appear, one stable and the other unstable.
These two branches are connected to each other at a saddle-node point RT = RsubTC
corresponding to the subcritical Rayleigh number for the onset of finite-amplitude
convection.

Supercritical bifurcation occurs, in general, for additive flows (RS > 0) and for
opposing flows (RS < 0) when Le < 1. For this situation, the supercritical Rayleigh
number, RsupTC , corresponding to the onset of supercritical motion is obtained from the
conditions d1 < 0 and d2 = 0 (i.e. ψ0 = 0) as

R
sup
TC = (1− R0

S )Rsup0 or R
sup
TC =

R
sup
0

1 +NLe
, (4.33)

which is the same result as that predicted by the linear stability analysis, (4.22).
On the other hand, subcritical bifurcation is possible only for the case of opposing

flows (RS < 0) when Le > 1. At the saddle-node point, the flow intensity is finite
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and the subcritical Rayleigh number, RsubTC , for the onset of subcritical convection is
obtained, from the conditions d1 > 0 and d2

1 + d2 = 0, as

RsubTC = Le−2

(√
Le2 − 1 +

√
−R0

S

)2

R
sup
0 or RsubTC =

Le2 − 1

Le(
√
Le−√−N)2

R
sup
0 .

(4.34)

At the threshold RsubTC , the flow intensity is given by

ψ0 = ±
√
ad1

Le
. (4.35)

The present solution indicates that the occurrence of subcritical convection is
related not only to N or RS but also to Le. Thus, it can be easily demonstrated that
the conditions

RS < 0, Le >

√
(R0

S − 1)/R0
S (4.36)

or

N < 0, Le > max

(
−N, 1

(−N)1/3

)
(4.37)

must be satisfied for the existence of subcritical convection.

4.1.3. Results and discussion

The influence of the aspect ratio, A, of the cavity on the critical number Rsup is
presented in figure 2(a). For a square cavity, A = 1, it is well known that the flow
pattern consists of a single convective cell and that Rsup = 4π2 when κ = 0 (Nield
1968) and Rsup = 22.946 when κ = 1 (Kimura, Vynnycky & Alavyoon 1995). For
A < 1 the only flow configuration possible, independently of the values of A and κ,
is a single cell. As a result, the critical number Rsup decreases monotonically towards
π2 as the value of A approaches 0. This limit was predicted by Vasseur, Satish &
Robillard (1987) for the case κ = 1. On the other hand, upon increasing A above
unity, the results are observed to depend strongly on κ. For κ = 1, the flow remains
unicellular and the value of Rsup decreases monotonically with A towards the value 12
predicted by Nield (1968). However, when κ = 0, as it is well known, the flow can be
monocellular or multicellular depending on the aspect ratio of the cavity. Thus, upon
increasing A from 1 up to

√
2, a one-cell mode prevails and Rsup increases from 4π2 to

9π2/2. At A =
√

2, two solutions are possible: one corresponds to a monocellular flow
and the other to a bicellular flow. The two flow configurations have the same critical
number, Rsup. Above A =

√
2, the flow exhibits a two-cell mode and Rsup decreases

from 9π2/2 to 4π2 as the value of A reaches 2. This process continues as the value of
A is made larger, the value Rsup = 4π2 being reached for all integer values of A. All
the peaks in figure 2(a) denote a transition between two different convective modes.

Figure 2(b) illustrates the variation of the parameter γ, (4.19), as function of the
aspect ratio, A, of the enclosure. According to (4.20), the perturbation amplitude
growth parameter p is a linear function of γ. The increase of γ results in increasing
the absolute values of pr and pi. In other words, the variation rate of the amplitude
perturbation and the oscillation frequency increase with increasing γ. For A 6 1, the
parameter γ is seen to tend towards the asymptotic value π2 when A is made small
enough. For A > 1 and κ = 1, γ is observed to decrease towards zero when A is made
large enough. Thus, for large aspect ratio the amplitude perturbation growth rate
becomes very small and it takes a considerable time to give rise to a convective flow.
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Figure 2. (a) Parameter Rsup and (b) parameter γ as a function of the aspect ratio A
for κ = 0 and 1.

However, for κ = 0, as shown in figure 2(b), γ undergoes an irregular variation with
A and tends asymptotically towards the constant 2π2 as the value of A is made large
enough. The jumps in figure 2(b) correspond to transitions from a n to a (n+ 1) cells
flow structure.

In figures 3(a) and 3(b) the thermal and solutal Rayleigh numbers, RT and RS ,
are normalized with respect to the constant Rsup0 , (4.18). Also, the amplitude ψ0 of
the stream function is normalized with respect to

√
a (i.e. ψa = ψ0/

√
a). The results

presented in these graphs are thus independent of the aspect ratio A of the cavity
and the thermal and solutal boundary conditions types, κ.

Figure 3(a) shows the stability diagram for Le = 10 and ε = 0.2 in which four
regions are delineated by the curves corresponding to RsubTC , RoverTC , RoscTC and R

sup
TC as

given by (4.34), (4.24), (4.25) and (4.33), respectively. In region I, below the subcritical
Rayleigh number RsubTC , the fluid is expected to remain stable according to both linear
and nonlinear theories. In region II, between RsubTC and the overstable critical Rayleigh
number RoverTC , the fluid remains at rest, according to the linear stability theory (the
real part of p is negative), while the nonlinear theory predicts the possible existence
of a finite-amplitude convection. Which one of those two modes will prevail depends
essentially on the initial conditions used to start the numerical code. In region III,
between RoverTC and RoscTC , the rest state is unstable and overstability is expected to occur.
For this situation, both real and imaginary parts of p are positive and oscillatory
flows are possible in this region, the extent of which depends strongly on the values
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Figure 3. (a) Stability diagram and (b) bifurcation diagram for R0
S = −20;

Le = 10 and ε = 0.2.

of Le, A and ε. Above the oscillating critical Rayleigh number, RoscTC , region IV, the
fluid is unstable and any infinitesimal perturbation will initiate a direct convective
flow. In this region, the real part of p is positive, but the imaginary one is null.

In figure 3(b) the normalized stream function amplitude, ψa = ψ0/
√
a, is plotted as

a function of the thermal Rayleigh number, R0
T , for Le = 10, ε = 0.2 and R0

S = −20.
The resulting diagram is also independent of the values of A and κ. In the graph
the four regions discussed in figure 3(a) are indicated for convenience. Upon starting
the numerical code with a conductive state or a finite-amplitude convection as initial
conditions, when increasing or decreasing R0

T , the resulting solution may follow the
hysteresis loop indicated by arrows. It is observed that below the supercritical value
R
sup
TC = 21×Rsup0 , according to the nonlinear analytical solutions, two convective modes

are possible. The solution corresponding to the higher convective mode, represented
in the graph by a solid line, was found numerically to be stable. On the other hand,
it has not been possible to confirm numerically the existence of the lower convective
mode depicted by a dashed line. Since any lower convection motion will grow with
time in the range RoverTC 6 RT 6 RoscTC , as predicted by the linear theory, this solution
is thus believed to be unstable. According to the linear stability analysis infinitesimal
oscillatory motions are induced in the range RoverTC 6 RT 6 RoscTC . However, with this
theory nothing can be said about the final state when convection is strong enough
such that the nonlinear advection terms overcome the linear ones. As a matter of
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Figure 4. (a) Bifurcation diagram for A = 1, N = −0.1, Le = 5, ε = 1 and κ = 0. (b) Flow structure
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fact, it was found numerically that, depending on the governing parameters, the final
convective flows could be either oscillatory or steady as it will be discussed below.

Figure 4 presents the bifurcation diagram predicted by the nonlinear perturbation
theory and the numerical solution for A = 1, N = −0.1, Le = 5, ε = 1 and κ = 0
(i.e. Rsup0 = 4π2). For these parameters, the values of the critical Rayleigh numbers
are given by RsubTC = 51.41, RoverTC = 52.64, RoscTC = 67.55 and R

sup
TC = 78.96. These

values are indicated on the graph by dotted vertical lines. In general, the agreement
between the nonlinear theory and the numerical results, depicted by solid circles,
is good. As expected, this agreement deteriorates as the value of RT increases due
to the severely truncated Fourier series used in the model. The numerical results
indicate that, upon decreasing RT from 120 to 40 step by step using the previous
results as initial conditions, a finite-amplitude convective flow can be sustained up
to RT = 53.3. Below this value the flow was found to become oscillating and purely
conductive for RT < 52.64. On the other hand, when using the rest state as initial
conditions and increasing RT from 40 to 120, it was found that convective flow is
possible only for RT > RoverTC = 52.64. Above this value, periodic oscillatory convection
is observed for 52.64 < RT 6 56.7. Thus, the steady-state branch cannot be reached
in this range. In this range, the oscillation time period is observed to increase with
RT . For 56.8 6 RT < 67.55, the numerical results demonstrate that the flow starts to
oscillate with increasing amplitude and then bifurcates towards a steady convective
state predicted by the stable branch.

It is noted that, for the case ε = 1 considered here, the subcritical and the overstable
critical Rayeigh numbers, RsubTC and RoverTC , are nearly equal. Thus, it is difficult to verify
numerically the threshold of the subcritical convection. For this reason, numerical
tests have been done for the same governing parameters but with ε = 0.2 for which
RoverTC > R

sup
TC (i.e. overstability is not possible). For this situation, it was found possible
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function extrema values (Ψmin and Ψmax), (b) heat transfer rate (Nu) and (c) mass transfer rate (Sh).

to obtain a steady-state convective flows up to RT = 53.3. For RT 6 53.2, the solution
was purely diffusive.

In the overstable region, i.e. 52.64 < RT < 67.55, the numerical results indicate the
existence of two possible convective modes, one steady and the other unsteady. Figure
4(b) illustrates the contour lines of stream function, temperature and concentrations
of the steady convective solution obtained for RT = 55, using as initial conditions
the steady convective state obtained for a higher Rayleigh number. On the other
hand, for the same values of the governing parameters, upon using the rest state as
initial conditions (ψ = 0, T = S = −y) together with a small-amplitude perturbation
(ψ0 = 10−6) the resulting convective flow was found to be periodically oscillating.
Figures 5(a)–5(c) illustrate the time history of the stream function extrema and the
Nusselt and Sherwood numbers, respectively. The results indicate that, as predicted by
the linear stability theory, instabilities develop as oscillations of increasing amplitudes.
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Figure 6. (a) Time history of the stream function extrema; and selected streamline patterns for (b)
t = 47.492, (c) t = 47.906, (d) t = 47.9086, (e) t = 47.909, (f) t = 47.910, (g) t = 48.258; RT = 55,
N = −0.1, Le = 5, A = 1, ε = 1 and κ = 0.

For this situation, the values of the real and imaginary parts of p are pr = 0.532 and
pi = 4.833. The period of oscillations (τ = 2π/pi) is thus 1.300. At the beginning of the
convective motion (t 6 20) it is found numerically that the period of oscillation is τ =
1.301±0.001, this result being in good agreement with that of the linear stability theory.
For t > 20 the advection effects become more and more important and eventually the
system converges towards a periodic oscillatory regime. For this situation, the period
of oscillations has increased to τ = 1.535 ± 0.001. The numerical results indicate an
overturning of the flow from clockwise to counterclockwise circulation and vice versa.
Figure 6(a) shows the variation of the stream function extrema with time during
half a period. At t = 47.492, figure 6(b) shows that the flow structure consists of a
unicellular counterclockwise circulation filling up the entire cavity. Upon increasing
t, the strength of the convective flow decreases and the resulting cell is approximately
aligned along the diagonal region of the cavity (figure 6c). At t = 47.9086 two
small clockwise rotating eddies are observed to occur at the right top and the left
bottom corners, respectively (figure 6d). These secondary cells grow in size with time
while the primary cell dwindles (figure 6e, f). At t = 48.258, the unicellular clockwise
circulation in figure 6(g) indicates that a complete reversal of the flow circulation has
been achieved. By symmetry (i.e. ψ(t+ τ/2, x, y) = −ψ(t,−x, y)), similar flow structure
evolution occurs for the remaining half-period. The whole process is repeated during
each time period (τ = 1.535).

The above results are concerned only with the case of a square enclosure. Upon
keeping the same governing parameters but increasing the aspect ratio up to A = 5
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the resulting steady-state solution (with five cells) was observed to be similar to that
reported for A = 1. However, the behaviour of the unsteady solution was found to
be quite different from that reported in figure 6. Thus, the flow structures, depicted
in figure 7 for different times t, show the existence of an oscillating horizontal left-
travelling wave with a time period of oscillations of about τ = 1.5448. The cells
horizontal motion is observed to occur in a short time period of about 0.005 where
ψext aproaches zero (see figure 7a) and the flow structure becomes asymmetric and
consisting of six cells. During this translation period, the cells move to the left by
a distance of 1. For an infinite shallow cavity (A � 1) with Dirichlet boundary
conditions, numerical results were obtained for the same governing parameters by
considering periodic boundary conditions in the horizontal direction (f(t, x, y) =
f(t, x+ AC, y), where f stands for Ψ , T and S and AC = 2 is the critical wavelength)
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Figure 8. Stream lines, isotherms and isoconcentrations in an infinite horizontal layer obtained for
N = −0.1, Le = 5, ε = 1 and A = AC = 2 using periodic boundary conditions in the horizontal
direction: (a) steady convective state for RT = 55, Ψmax = −Ψmin = 1.924, Nu = 1.371, Sh = 3.320;
(b) left-travelling wave for RT = 53, Ψmax = −Ψmin = 0.869, Nu = 1.087, Sh = 1.865.

with zero horizontal net flow. For this situation, the values of the four critical Rayleigh
numbers, RsubTC , RoverTC , RoscTC and RsupTC , are the same as those predicted for a square cavity.
Starting the numerical runs with the rest-state solution, it was found that for RT = 55
(in the overstable regime) the solution oscillates at first and then converges towards a
steady convective state as depicted in figure 8(a). However, for RT = 53 as shown in
figure 8(b), the final solution is characterized by a left-travelling wave with constant
horizontal velocity uc = −1.03. The flow intensity remains constant

4.2. Parallel flow approximation

In this section an analytical solution is derived to predict the steady convective regime
within a porous enclosure subject to constant fluxes of heat and mass (κ = 1). With
this type of boundary conditions, for small or large aspect ratios A, the problem
can be significantly simplified with the help of the parallel flow approximation, as
discussed for instance by Mamou et al. (1995, 1998a). The limiting case of a slender
cavity will be considered first.

4.2.1. Slender cavity A� 1

When the aspect ratio A of the cavity is small enough, according to the parallel
flow approximation, u(x, y) ' 0 and v(x, y) ' v(x) in the central part of the enclosure.
For this situation, it can be demonstrated that the temperature and concentration
are linearly stratified in the vertical direction such that θ(x, y) = Cθ y + ϕθ(x) and
φ(x, y) = Cφ y+ϕφ(x). With these approximations, the governing equations (2.14) can
be solved to yield the stream function, temperature and concentration distributions

ψ(x, y) = ψ0 cos (ωx),

ϕθ(x, y) = Cθ y − ψ0

ω
Cθ sin (ωx),

ϕφ(x, y) = Cφ y − Leψ0

ω
Cφ sin (ωx),

 (4.38)

where ψ0 is the value of the stream function at the centre of the cavity, Cθ and Cφ are
the unknown temperature and concentration gradients in the y-direction respectively
and

ω =
√−(RT Cθ + RS Cφ). (4.39)

From the stream function boundary condition, (2.15), it follows that

ψ0 cos (ω/2) = 0 (4.40)
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which indicates that the rest state (ψ0 = 0) is a possible solution which is expected
to be stable up to a subcritical Rayleigh number RsubTC (at which a finite-amplitude
convective motion bifurcates from the rest state). From (4.40) it is clear that this
convective motion implies that

ω = (2n+ 1)π, n = 0, 1, . . . . (4.41)

In the above relation n corresponds to different flow structures. For n = 0, the flow
is unicellular and for n > 1 the flow consists of (2n+ 1) counter-rotating vertical cells.

The balance of heat and solute at each transversal section (at given y) of the
enclosure yields

Cθ = − 2/Ay

2 + ψ2
0

, Cφ = − 2/Ay

2 + Le2ψ2
0

. (4.42)

Upon combining (4.39) and (4.42), it is found that

Le4ψ4
0 − 2ad1Le

2ψ2
0 − a2d2 = 0, (4.43)

where d1 and d2 are similar to those defined in (4.30). For the present situation, a = 1
and Rsup = ω2 = π2 for monocellular flows. The solution of (4.43) is similar to that
discussed for (4.32).

4.2.2. Shallow cavity A� 1

The case of shallow cavity subject to uniform vertical fluxes of heat and mass has
been investigated recently by Mamou et al. (1995) on the basis of the parallel flow
approximation. Following the procedure described above, the following solution was
obtained by these authors:

ψ = ψ0(1− 4y2),

ϕθ = Cθx+
Cθψ0

3
(3y − 4y3),

ϕφ = Cφx+
CφLeψ0

3
(3y − 4y3),

 (4.44)

where

ψ0 =
3

2

(
R0
T Cθ +

R0
S

Le
Cφ

)
. (4.45)

The constants Cθ and Cφ are given by

Cθ =
4a ψ0

3(2a+ ψ2
0)
, Cφ =

4a Le ψ0

3(2a+ Le2ψ2
0)
. (4.46)

Upon combining the definition of ψ0, (4.45), and that of Cθ and Cφ, (4.46), it is
readily found that

ψ0(Le
4ψ4

0 − 2ad1Le
2ψ2

0 − a2d2) = 0, (4.47)

where d1 and d2 are defined in (4.30) with a = 15
16

and Rsup = 12. Here again, the
solution of (4.47) in terms of ψ0 is similar to that depicted in (4.31) and (4.32).

4.2.3. Results and discussion

Figures 9(a) and 9(b) illustrate typical bifurcation types, in terms of the flow
intensity, ψa = ψ0/

√
a, as a function of R0

T , R0
S (or N) and Le, as predicted by

the nonlinear perturbation theory and the parallel flow approximation. With this
normalization the curves depicted in the graphs are valid, independently of the values
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of A and κ. As mentioned before, the constant a depends solely on A and κ. For
instance, a = 8 for κ = 0 and A = 1. On the other hand for κ = 1, a = 15

16
when

A� 1 and a = 1 when A� 1, respectively.
Figure 9(a) exemplifies the effect of the Lewis number on the bifurcation character

for N = −0.1. For this value, according to (4.37), the Lewis number expressing the
transition from a supercritical to a subcritical bifurcation is Le = 2.154. As can be
observed from the graph, the bifurcation is supercritical when Le < 2.154 (i.e. Le = 2)
and subcritical when Le > 2.154 (i.e. Le = 5 and 10). Also, as discussed by Mamou
(1998) and Mamou, Vasseur & Bilgen (1998b), the parameter Rsup is infinity when
NLe 6 −1. For this situation, the linear stability analysis indicates that the system
is unconditionally stable to small-amplitude perturbation. However, the nonlinear
perturbations theory demonstrates the existence of finite-amplitude convection as can
be seen from the graph.

Another view of the effect of the Lewis number on the present problem is illustrated
in figure 9(b) for R0

S = −2. The Lewis number corresponding to the passage from
subcritical to supercritical bifurcation is obtained from (4.36) as Le = 1.225. For
this reason, all the curves plotted in the graph for Le > 1.225 indicate subcritical
bifurcation. The limiting curve corresponding to Le → ∞ is also presented in figure
9(b) for comparison. For this situation, the solute concentration is almost uniform
in the whole cavity, except in very thin layers near the boundaries. For this limit,
the critical thermal Rayleigh number for the onset of convection approaches that
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Figure 10. Comparison between the nonlinear theory, the parallel flow approximation and
the numerical results: bifurcation diagram for R0

S = −2, Le = 10 and κ = 0 and 1.

corresponding to the onset of Rayleigh–Bénard convection due solely to temperature
variations, i.e.

RsubTC → R
sup
0 and ψ0 → 0 as Le→∞. (4.48)

Numerical and nonlinear theory results are presented in figure 10 for Le = 10,
R0
S = −2 and κ = 0 and 1. For this situation, the subcritical Rayleigh number is

RsubTC = 1.291 × Rsup0 . For a shallow enclosure (A � 1, κ = 1 and R
sup
0 = 12), the

agreement between the numerical results (obtained for A = 10, since, as discussed for
instance by Mamou et al. 1995, for such a value the flow structure over the central
part of the cavity becomes independent of the aspect ratio) and the parallel flow
approximation is seen to be excellent. Upon decreasing R0

T below 4, the numerical
results presented in figure 10 indicate that a steady unicellular flow is possible down
to R0

T = 1.45. In the range 1.3 < R0
T < 1.45 the flow was found to be permanently

oscillating. Below R0
T = 1.291 the numerical results show that convection is not

possible. The analytical results, predicted by the nonlinear perturbation theory, for
the case A� 1 and κ = 1, is depicted in figure 10 by dash-dotted line. It is observed
that, due to the severely truncated Fourier series used, the results overestimate the flow
intensity. However, it is noted that the subcritical Rayleigh number predicted by this
theory is in agreement with the value obtained from the parallel flow approximation.

The case of a square cavity subject to Dirichlet boundary conditions (A = 1 and
κ = 0) is also presented in figure 10. Good agreement is observed between the
numerical and the nonlinear theory results near the onset of supercritical convection.
It is noted that the linear stability analysis predicts that the onset of overstable
convection occurs at a critical Rayleigh number RoverTC which varies from 1.3 to 3 as
the value of ε decreases from 1 to 0.15. For ε = 0.15, RoverTC = R

sup
TC such that, according

to the linear stability analysis, subcritical convection is not possible. However, both
the nonlinear theory and the numerical results presented in figure 10 indicate that
subcritical convection is possible independently of the value of ε and RoverTC .
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Figure 11. Bifurcation diagram as predicted by the parallel flow approximation and
the nonlinear theory for R0

T = 2.

Figure 11 illustrates the effect of the Lewis number, Le, and the buoyancy ratio, N,
on the flow intensity, ψa, for R0

T = 2. As can be seen from figure 11(a), the convective
flows could be supercritical or subcritical depending on the values of N and Le. For
a given value of N, both subcritical and supercritical bifurcations are observed to
exist upon varying Le from 0 to 20. Figure 11(b) indicates that for N = −0.1, as
can be deduced from figure 11(a), the finite-amplitude flow, found for Le < 2.154,
comes from a subcritical primary bifurcation. The small-amplitude unstable convective
branch appears only for Le > 5 as it is for this value that the subcritical primary
bifurcation point reaches the value R0

T = 2 chosen in figure 11. For N = −0.5,
the branch on the left corresponds to flows coming from a supercritical primary
bifurcation. This branch disappears at Le = 1 when the threshold for this situation
becomes larger than the value R0

T = 2. This bifurcation then becomes subcritical,
associated with a saddle-node point (at Le = 5.36 such that RsubTC = RT = 2 × Rsup0 )
when Le is increased.

Finally, some typical numerical results are presented in figures 12 and 13 for
RT = 100, N = −0.8, Le = 10, A = 5, ε = 1 and κ = 1. These results demonstrate
the existence of at least four possible solutions for this set of governing parameters.
The first one corresponds to the diffusive regime. Upon starting the numerical code
with Ψ = T = S = 0 as initial conditions, the rest state was found to remain stable
(results are not presented here). The second solution corresponds to a unicellular
flow (see figure 12a) for which the flow is parallel in the central part of the cavity,



84 M. Mamou and P. Vasseur

(a) (b)

(c)

(d )

(e)

( f )

(g)

(h)

(i)

( j )

(k)

T

S

Ψ

Figure 12. Multiple solutions for RT = 100, N = −0.8, Le = 10, A = 5, ε = 1 and κ = 1; stream
function, temperature and concentration patterns are presented for three different possible solutions
in (a) monocellular flow, (b) Bénard flow and (c–k) unsteady flow. (a) Ψmax = 3.689, Ψmin = 0,
Nu = 3.635 and Sh = 6.739, (b) Ψmax = 3.412, Ψmin = −3.412, Nu = 2.459 and Sh = 8.288,
(c) t = 5.150, (d) t = 6.741, (e) t = 7.000, (f) t = 7.093, (g) t = 7.187, (h) t = 7.276, (i) t = 7.364,
(j) t = 7.535 and (k) t = 8.692.

in agreement with the analytical predictions. This solution was obtained by using, as
initial conditions, a unicellular flow calculated previously for another set of governing
parameters. Also, using a multi-cellular flow pattern as initial conditions yielded the
Bénard flow structure depicted in figure 12(b) (third solution). Recently, convection in
a shallow porous layer heated from below by a constant flux was studied by Kimura
et al. (1995). The transient development of the velocity and temperature fields from
the rest state was investigated by these authors. The formation of a number of cells,
whose horizontal dimensions had roughly the same order of magnitude as the height
of the cavity, was initially observed. These convective cells gradually merged together
to form horizontal elongated cells, and eventually a single cell. The time taken to
reach a steady state was found to be relatively high and to depend on the aspect ratio
of the cavity. For this reason, the computations presented in figure 12(b) were carried
out up to a dimensionless time as high as approximately 500 in order to ensure that
a steady state has been reached. Finally, a unicellular flow with a small amplitude
was also tried as initial conditions for the present problem. It was found that the
resulting solution evolves towards a permanently oscillating state of convection in
which the flow circulation changes from a clockwise to counterclockwise direction and
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Figure 13. Nusselt and Sherwood numbers and stream function extrema versus time for opposing
flows for RT = 100, N = −0.8, Le = 10, A = 5, ε = 1 and κ = 1.

vice versa (fourth solution, see figure 12c–k). The time evolution of the corresponding
stream function extrema and Nusselt and Sherwood numbers are shown in figure 13.
A physical explanation for the existence of such oscillating flows, for double-diffusive
convection, has been given by many authors (see, for instance, Rosenberg & Spera
1992).

5. Conclusion
The onset and development of double-diffusive convection in a rectangular cell

subject to vertical gradients of heat and solute have been investigated analytically
and numerically. Results are obtained for different types of thermal and solutal
boundary conditions, namely Dirichlet and Neumann types. The stability of the
system was studied analytically using both linear and nonlinear perturbation theories.
When the layer is subject to uniform fluxes of heat and solute, analytical solutions
have been derived, for the limiting case of shallow or slender layers, on the basis
of the parallel flow approximation. Also, a numerical solution of the full governing
equations was obtained using the finite element method.

The main conclusions of the present analysis are as follows.
(i) Instabilities via stationary or oscillatory modes have been determined analyt-
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ically, on the basis of the linear and nonlinear perturbation theories, in terms of
the governing parameters of the problem. Four different regimes are found to exist,
namely the pure diffusive regime, the subcritical convective regime, the overstable
regime and the supercritical regime. Domains of existence of the different regimes
were found to depend on the solutal to thermal buoyancy ratio, the Lewis number,
the aspect ratio of the cavity, the normalized porosity of the porous medium and the
thermal and solutal boundary condition type.

(ii) For finite-amplitude flows, in the vicinity of the onset of supercritical convection,
two types of bifurcation are predicted by the nonlinear analytical models proposed
in the present study. For the first one, called subcritical bifurcation, the convective
flow bifurcates from the rest state through finite-amplitude convection. This type of
bifurcation occurs only for the case of opposing buoyancy forces and when the Lewis
number is greater than unity. The threshold characterized by the subcritical Rayleigh
number was found to be a function of the buoyancy ratio, the Lewis number, the
aspect ratio of the enclosure and the thermal and solutal boundary condition types.
For the second one, called supercritical bifurcation, the convective flow bifurcates
from the rest state with zero amplitude. This type of bifurcation exists for additive
flows and for opposing flows with a Lewis number smaller than unity. Despite the
severely truncated Fourier series used in the nonlinear perturbation analysis, the
agreement between the analytical and the numerical results, in the neighbourhood of
the onset of supercritical convection, is acceptable. On the other hand, the parallel flow
approximation was found to be in agreement with the numerical results, independently
of the strength of the convective motion, provided that the aspect ratio of the cavity
is made large (or small) enough.

(iii) The existence of multiple solutions, for a given set of the governing parameters,
is demonstrated numerically for the case of opposing flows. Thus, depending upon the
initial conditions used to start the numerical code, a pure diffusive state, unicellular
and multicellular steady flows and permanently oscillating flows could be observed in
the system. For an infinite horizontal layer, a steady convective state and horizontal
travelling wave are observed.
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